Ekeland's Variational Principle for Set-Valued Functions

نویسندگان

  • C. G. Liu
  • K. F. Ng
چکیده

We establish several set-valued function versions of Ekeland’s variational principle and hence provide some sufficient conditions ensuring the existence of error bounds for inequality systems defined by finitely many lower semicontinuous functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On generalized Ekeland's variational principle and equivalent formulations for set-valued mappings

We propose a very weak type of generalized distance called weak τ -function and use it to weaken the assumptions about lower semicontinuity in existing formulations of Ekeland’s variational principle for a kind of minimizers of a set-valued mapping, which is different from the Pareto minimizer, and in recent results which are equivalent to Ekeland’s variational principle.

متن کامل

Ekeland’s Variational Principle and Some Related Issues

We introduce several new kinds of inferior and superior limits and corresponding kinds of semicontinuity of a set-valued map. Together with the known concepts of semicontinuity, they can be used to have a clearer insight of local behaviors of maps. Then we investigate all major semicontinuity properties of solution maps to a general quasivariational inclusion. Consequences are derived for sever...

متن کامل

Pontryagin Maximum Principle for Optimal Control of

In this paper we investigate optimal control problems governed by variational inequalities. We present a method for deriving optimality conditions in the form of Pontryagin's principle. The main tools used are the Ekeland's variational principle combined with penalization and spike variation techniques. 1. Introduction. The purpose of this paper is to present a method for deriving a Pontryagin ...

متن کامل

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011